
Week 12 - Monday

 What did we talk about last time?
 More networking
 Sockets

If debugging is the process of removing software
bugs, then programming must be the process of
putting them in.

Edsger Dijkstra

 There are a lot of includes you'll need to get your socket
programming code working correctly

 You should always add the following:
 #include <netinet/in.h>
 #include <netdb.h>
 #include <sys/socket.h>
 #include <sys/types.h>
 #include <arpa/inet.h>
 #include <unistd.h>

 If you want to create a socket, you can call the socket() function
 The function takes a communication domain
 Will always be AF_INET for IPv4 Internet communication

 It takes a type
 SOCK_STREAM usually means TCP
 SOCK_DGRAM usually means UDP

 It takes a protocol
 Which will always be 0 for us

 It returns a file descriptor (an int)

int sockFD = -1;
sockFD = socket(AF_INET, SOCK_STREAM, 0);

socket()

bind()

listen()

accept()

read()

write()

close()

socket()

connect()

read()

write()

close()

Repeat until done

Server Client

 We'll start with the client, since the code is simpler
 Assuming that a server is waiting for us to connect to it, we can do

so with the connect() function
 It takes
 A socket file descriptor
 A pointer to a sockaddr structure
 The size of the sockaddr structure

 It returns -1 if it fails

connect(sockFD, (struct sockaddr *) &address,
sizeof(address));

 We fill a sockaddr_in structure with
 The communication domain
 The correct endian port
 The translated IP address

 We fill it with zeroes first, just in case

struct sockaddr_in address;
memset(&address, 0, sizeof(address));
address.sin_family = AF_INET;
address.sin_port = htons(80);
inet_pton(AF_INET, "173.194.43.0", &(address.sin_addr));

 Once you've created your socket, set up your port and address, and called
connect(), you can send data
 Assuming there were no errors
 Sending is just like writing to a file

 The write() function takes
 The socket file descriptor
 A pointer to the data you want to send
 The number of bytes you want to send

 It returns the number of bytes sent

char* message = "Flip mode is the squad!";
write(socketFD, message, strlen(message)+1);

 Or, once you're connected, you can also receive data
 Receiving is just like reading from a file

 The read() function takes
 The socket file descriptor
 A pointer to the data you want to receive
 The size of your buffer

 It returns the number of bytes received, or 0 if the connection is
closed, or -1 if there was an error

char message[100];
read(socketFD, message, 100);

 Sending and receiving are the same on servers, but setting up
the socket is more complex

 Steps:
1. Create a socket in the same way as a client
2. Bind the socket to a port
3. Set up the socket to listen for incoming connections
4. Accept a connection

 Binding attaches a socket to a particular port at a particular IP address
 You can give it a flag that automatically uses your local IP address, but it could be an issue if you have

multiple IPs that refer to the same host
 Use the bind() function, which takes
 A socket file descriptor
 A sockaddr pointer (which will be a sockaddr_in pointer for us) giving the IP address and port
 The length of the address

struct sockaddr_in address;
memset(&address, 0, sizeof(address));
address.sin_family = AF_INET;
address.sin_port = htons(80);
address.sin_addr.s_addr = INADDR_ANY;
bind(socketFD, (struct sockaddr*)&address, sizeof(address));

 After a server has bound a socket to an IP address and a port, it
can listen on that port for incoming connections

 To set up listening, call the listen() function
 It takes
 A socket file descriptor
 The size of the queue that can be waiting to connect

 You can have many computers waiting to connect and handle
them one at a time

 For our purpose, a queue of size 1 often makes sense

listen(socketFD, 1);

 Listening only sets up the socket for listening
 To actually make a connection with a client, the server has to call accept()
 It is a blocking call, so the server will wait until a client tries to connect
 It takes
 A socket file descriptor
 A pointer to a sockaddr structure that will be filled in with the address of the person connecting to you
 A pointer to the length of the structure

 It returns a file descriptor for the client socket
 We will usually use a sockaddr_storage structure

struct sockaddr_storage otherAddress;
socklen_t otherSize = sizeof(otherAddress);
int otherSocket = accept(socketFD, (struct sockaddr *)
&otherAddress, &otherSize);

 The setsockopt() function allows us to set a few options
on a socket

 The only one we care about is the SO_REUSEADDR option
 If a server crashes, it will have to wait for a timeout (a minute

or so) to reconnect on the same port unless this option is set
 A dead socket is taking up the port

int value = 1; //1 to turn on port reuse
setsockopt(socketFD, SOL_SOCKET, SO_REUSEADDR, &value,
sizeof(value));

 Let's make a client and connect it to nc acting as a server
 We'll just print everything we get to the screen

 Let's make a server and connect to it with nc
 We'll read things and send them across the network

 Until SSDs completely take over, many physical hard drives
are electronically controlled spinning platters with magnetic
coatings
 Disks have circular tracks divided into sectors which contain blocks
 A block is the smallest amount of information a disk can read or write

at a time
 Physical disks are partitioned into logical disks
 Each partition is treated like a separate device in Linux
 And a separate drive (C:, D:, E:, etc.) in Windows
 Each partition can have its own file system

 Linux supports a lot of file systems
 ext2, the traditional Linux file system
 Unix ones like the Minix, System V, and BSD file systems
 Microsoft’s FAT, FAT32, and NTFS file systems
 The ISO 9660 CD-ROM file system
 Apple's HFS
 Network file systems, including Sun’s widely used NFS
 A range of journaling file systems, including ext3, ext4, Reiserfs, JFS, XFS,

and Btrfs
 And more!

 Virtually all file systems have each partition laid out something
like this

 The boot block is the first block and has information needed to
boot the OS

 The superblock has information about the size of the i-node table
and logical blocks

 The i-node table has entries for every file in the system
 Data blocks are the actual data in the files and take up almost all

the space

Boot block Superblock i-node Table Data blocks

 Every file has an i-node in the i-node table
 Each i-node has information about the file like

type (directory or not), owner, group,
permissions, and size

 More importantly, each i-node has pointers to
the data blocks of the file on disk

 In ext2, i-nodes have 15 pointers
 The first 12 point to blocks of data
 The next points to a block of pointers to blocks of

data
 The next points to a block of pointers to pointers to

blocks of data
 The last points to a block of pointers to pointers to

pointers to blocks of data

 Function pointers

 Finish Project 5
 Due Wednesday!

 Read Section 5.11 of K&R for information on function pointers

	COMP 2400
	Last time
	Questions?
	Project 5
	Quotes
	Sockets
	Includes
	socket()
	Slide Number 9
	Client
	Making an address for a client
	Sending
	Receiving
	Servers
	Bind
	Listening
	Accept
	setsockopt()
	Example 1
	Example 2
	File Systems
	Disks and partitions
	Popular file systems
	Partition layout
	i-nodes
	Upcoming
	Next time…
	Reminders

