
Week 12 - Monday



 What did we talk about last time?
 More networking
 Sockets







If debugging is the process of removing software 
bugs, then programming must be the process of 
putting them in. 

Edsger Dijkstra





 There are a lot of includes you'll need to get your socket 
programming code working correctly

 You should always add the following:
 #include <netinet/in.h>
 #include <netdb.h>
 #include <sys/socket.h>
 #include <sys/types.h>
 #include <arpa/inet.h>
 #include <unistd.h>



 If you want to create a socket, you can call the socket() function
 The function takes a communication domain
 Will always be AF_INET for IPv4 Internet communication

 It takes a type
 SOCK_STREAM usually means TCP
 SOCK_DGRAM usually means UDP

 It takes a protocol
 Which will always be 0 for us

 It returns a file descriptor (an int)

int sockFD = -1;
sockFD = socket(AF_INET, SOCK_STREAM, 0);



socket()

bind()

listen()

accept()

read()

write()

close()

socket()

connect()

read()

write()

close()

Repeat until done

Server Client



 We'll start with the client, since the code is simpler
 Assuming that a server is waiting for us to connect to it, we can do 

so with the connect() function
 It takes
 A socket file descriptor
 A pointer to a sockaddr structure
 The size of the sockaddr structure

 It returns -1 if it fails

connect(sockFD, (struct sockaddr *) &address, 
sizeof(address));



 We fill a sockaddr_in structure with
 The communication domain
 The correct endian port
 The translated IP address

 We fill it with zeroes first, just in case

struct sockaddr_in address;
memset(&address, 0, sizeof(address)); 
address.sin_family = AF_INET;
address.sin_port = htons(80);
inet_pton(AF_INET, "173.194.43.0", &(address.sin_addr));



 Once you've created your socket, set up your port and address, and called 
connect(), you can send data
 Assuming there were no errors
 Sending is just like writing to a file

 The write() function takes
 The socket file descriptor
 A pointer to the data you want to send
 The number of bytes you want to send

 It returns the number of bytes sent

char* message = "Flip mode is the squad!";
write(socketFD, message, strlen(message)+1);



 Or, once you're connected, you can also receive data
 Receiving is just like reading from a file

 The read() function takes
 The socket file descriptor
 A pointer to the data you want to receive
 The size of your buffer

 It returns the number of bytes received, or 0 if the connection is 
closed, or -1 if there was an error

char message[100];
read(socketFD, message, 100);



 Sending and receiving are the same on servers, but setting up 
the socket is more complex

 Steps:
1. Create a socket in the same way as a client
2. Bind the socket to a port
3. Set up the socket to listen for incoming connections
4. Accept a connection



 Binding attaches a socket to a particular port at a particular IP address
 You can give it a flag that automatically uses your local IP address, but it could be an issue if you have 

multiple IPs that refer to the same host
 Use the bind() function, which takes
 A socket file descriptor
 A sockaddr pointer (which will be a sockaddr_in pointer for us) giving the IP address and port
 The length of the address

struct sockaddr_in address;
memset(&address, 0, sizeof(address));
address.sin_family = AF_INET;
address.sin_port = htons(80);
address.sin_addr.s_addr = INADDR_ANY;
bind(socketFD, (struct sockaddr*)&address, sizeof(address));



 After a server has bound a socket to an IP address and a port, it 
can listen on that port for incoming connections

 To set up listening, call the listen() function
 It takes
 A socket file descriptor
 The size of the queue that can be waiting to connect

 You can have many computers waiting to connect and handle 
them one at a time

 For our purpose, a queue of size 1 often makes sense

listen( socketFD, 1);



 Listening only sets up the socket for listening
 To actually make a connection with a client, the server has to call accept()
 It is a blocking call, so the server will wait until a client tries to connect
 It takes
 A socket file descriptor
 A pointer to a sockaddr structure that will be filled in with the address of the person connecting to you
 A pointer to the length of the structure

 It returns a file descriptor for the client socket
 We will usually use a sockaddr_storage structure

struct sockaddr_storage otherAddress;
socklen_t otherSize = sizeof(otherAddress);
int otherSocket = accept( socketFD, (struct sockaddr *) 
&otherAddress, &otherSize);



 The setsockopt() function allows us to set a few options 
on a socket

 The only one we care about is the SO_REUSEADDR option
 If a server crashes, it will have to wait for a timeout (a minute 

or so) to reconnect on the same port unless this option is set
 A dead socket is taking up the port

int value = 1; //1 to turn on port reuse
setsockopt(socketFD, SOL_SOCKET, SO_REUSEADDR, &value, 
sizeof(value));



 Let's make a client and connect it to nc acting as a server
 We'll just print everything we get to the screen



 Let's make a server and connect to it with nc
 We'll read things and send them across the network





 Until SSDs completely take over, many physical hard drives 
are electronically controlled spinning platters with magnetic 
coatings
 Disks have circular tracks divided into sectors which contain blocks
 A block is the smallest amount of information a disk can read or write 

at a time
 Physical disks are partitioned into logical disks
 Each partition is treated like a separate device in Linux
 And a separate drive (C:, D:, E:, etc.) in Windows
 Each partition can have its own file system



 Linux supports a lot of file systems
 ext2, the traditional Linux file system
 Unix ones like the Minix, System V, and BSD file systems
 Microsoft’s FAT, FAT32, and NTFS file systems
 The ISO 9660 CD-ROM file system
 Apple's HFS
 Network file systems, including Sun’s widely used NFS
 A range of journaling file systems, including ext3, ext4, Reiserfs, JFS, XFS, 

and Btrfs
 And more!



 Virtually all file systems have each partition laid out something 
like this

 The boot block is the first block and has information needed to 
boot the OS

 The superblock has information about the size of the i-node table 
and logical blocks

 The i-node table has entries for every file in the system
 Data blocks are the actual data in the files and take up almost all 

the space

Boot block Superblock i-node Table Data blocks



 Every file has an i-node in the i-node table 
 Each i-node has information about the file like 

type (directory or not), owner, group, 
permissions, and size

 More importantly, each i-node has pointers to 
the data blocks of the file on disk

 In ext2, i-nodes have 15 pointers
 The first 12 point to blocks of data
 The next points to a block of pointers to blocks of 

data
 The next points to a block of pointers to  pointers to 

blocks of data
 The last points to a block of pointers to pointers to 

pointers to blocks of data





 Function pointers



 Finish Project 5
 Due Wednesday!

 Read Section 5.11 of K&R for information on function pointers


	COMP 2400
	Last time
	Questions?
	Project 5 
	Quotes
	Sockets
	Includes
	socket()
	Slide Number 9
	Client
	Making an address for a client
	Sending
	Receiving
	Servers
	Bind
	Listening
	Accept
	setsockopt()
	Example 1
	Example 2
	File Systems
	Disks and partitions
	Popular file systems
	Partition layout
	i-nodes
	Upcoming
	Next time…
	Reminders

