Week 12 - Monday

COMP 2400

= What did we talk about last time?
= More networking
= Sockets

Questions?

Project 5

If debugging is the process of removing software
bugs, then programming must be the process of
putting them in.

Edsger Dijkstra

Sockets

= There are a lot of includes you'll need to get your socket
programming code working correctly
= You should always add the following:

* #include <netinet/in.h>

* #include <netdb.h>

= #include <sys/socket.h>
= #include <sys/types.h>
= #include <arpa/inet.h>
* finclude <unistd.h>

= If you want to create a socket, you can call the socket () function
= The function takes a communication domain

= Will always be AF_INET for IPv4 Internet communication
= |t takes a type

= SOCK_STREAMusually means TCP

= SOCK_DGRAM usually means UDP
= |t takes a protocol

= Which will always be 0 for us
= |t returns afile descriptor (an int)

int sockFD = -1;
sockFD = socket (AF_ INET, SOCK STREAM, O0) ;

Server Client

socket () socket ()

read() <

Repeat until done

p» read()

= We'll start with the client, since the code is simpler

= Assuming that a server is waiting for us to connect to it, we can do
so with the connect () function
= It takes

= A socket file descriptor

= A pointer to a sockaddr structure

= The size of the sockaddr structure
= [t returns -1 if it fails

connect (sockFD, (struct sockaddr *) &address,
sizeof (address)) ;

Making an address for a client

We fill a sockaddr in structure with
= The communication domain
= The correct endian port

= The translated IP address
We fill it with zeroes first, just in case

struct sockaddr in address;

memset (&address, 0, sizeof (address)) ;
address.sin family = AF INET;

address.sin port = htons(80);
inet pton(AF INET, "173.194.43.0", &(address.sin addr))

= Once you've created your socket, set up your port and address, and called
connect (), you can send data

= Assuming there were no errors
= Sending is just like writing to a file
= Thewrite () function takes
= The socket file descriptor
= A pointer to the data you want to send

= The number of bytes you want to send
= |t returns the number of bytes sent

char* message = "Flip mode is the squad!";
write (socketFD, message, strlen(message)+l) ;

= Or, once you're connected, you can also receive data
= Receiving is just like reading from a file

= The read () function takes

= The socket file descriptor

= A pointer to the data you want to receive

= The size of your buffer

= |t returns the number of bytes received, or 0 if the connection is
closed, or -1 if there was an error

char message[100];
read (socketFD, message,

100) ;

= Sending and receiving are the same on servers, but setting up
the socket is more complex

= Steps:
1. Create a socket in the same way as a client

2. Bindthe socket to a port
3. Set up the socket to listen forincoming connections
4. Accept aconnection

Binding attaches a socket to a particular port at a particular IP address

= You can give it a flag that automatically uses your local IP address, but it could be an issue if you have
multiple IPs that refer to the same host

Use the bind () function, which takes

= Asocket file descriptor

= A sockaddr pointer (which will be a sockaddr in pointer for us) giving the IP address and port
= The length of the address

struct sockaddr in address;

memset (&address, 0, sizeof (address)) ;
address.sin family = AF INET;
address.sin port = htons(80) ;
address.sin addr.s addr = INADDR ANY;
blnd(socketFD (struct sockaddr*)&address, sizeof (address)) ;

= After a server has bound a socket to an IP address and a port, it
can listen on that port for incoming connections

= To set up listening, call the 1isten () function

= |t takes

= A socket file descriptor

= The size of the queue that can be waiting to connect

= You can have many computers waiting to connect and handle
them one at a time

= For our purpose, a queue of size 1 often makes sense

listen(socketFD, 1);

Listening only sets up the socket for listening

To actually make a connection with a client, the server has to call accept ()
It is a blocking call, so the server will wait until a client tries to connect

It takes

= Asocket file descriptor
= A pointer to a sockaddr structure that will be filled in with the address of the person connecting to you

= A pointer to the length of the structure
It returns a file descriptor for the client socket
= We will usually use a sockaddr storage structure

struct sockaddr storage otherAddress;

socklen t otherSize = sizeof (otherAddress);

int otherSocket = accept(socketFD, (struct sockaddr ¥*)
&otherAddress, &otherSize) ;

= The setsockopt () function allows us to set a few options
on a socket

= The only one we care about is the SO_REUSEADDR option

= If a server crashes, it wi
or so) to reconnectont

= A dead socket is taking u

| have to wait for a timeout (a minute
ne same port unless this option is set
0 the port

sizeof (value)) ;

int value = 1; //1 to turn on port reuse
setsockopt (socketFD, SOL SOCKET, SO REUSEADDR, &value,

= Let's make a client and connect it to nc acting as a server
= We'll just print everything we get to the screen

= Let's make a server and connect to it with nc
= We'll read things and send them across the network

File Systems

= Until SSDs completely take over, many physical hard drives
are electronically controlled spinning platters with magnetic
coatings
= Disks have circular tracks divided into sectors which contain blocks

= A blockis the smallest amount of information a disk can read or write
at a time

= Physical disks are partitioned into logical disks
= Each partition is treated like a separate device in Linux

= And a separatedrive(C:,D:, E:, etc.)in Windows
= Each partition can have its own file system

Linux supports a lot of file systems

ext2, the traditional Linux file system

Unix ones like the Minix, SystemV, and BSD file systems
Microsoft's FAT, FAT32, and NTFS file systems

The ISO 9660 CD-ROM file system

Apple's HFS

Network file systems, including Sun’s widely used NFS

A range of journaling file systems, including ext3, exts, Reiserfs, JFS, XFS,
and Btrfs

And more!

= Virtually all file systems have each partition laid out something

like this

Boot block uu Data blocks

= The boot block is the first block and has information needed to
boot the OS

= The superblock has information about the size of the i-node table
and logical blocks

= The i-node table has entries for every file in the system

= Data blocks are the actual data in the files and take up almost all
the space

i-node entry

Every file has an i-node in the i-node table Oherfie DB = Data block
= Eachi-node has information about the file like | oIPB=Double TBb
type (directory or not), owner, group, Lo To80] | Noe motal e are s
permissions, and size -
= More importantly, each i-node has pointers to
the data blocks of the file on disk :
= In ext2, i-nodes have 15 pointers Divect poners |0 P25
= The first 12 point to blocks of data R
= The next points to a block of pointers to blocks of 3
data ’ DB 11 A DB 12
= The next points to a block of pointers to pointers to —/ Two Blon 15
blocks of data }E = / | DB
1 1 1 Pointers to indirectly - e il o
* The last points to a block of pointers to pointersto [jicrraciy [{2 B —
pointers to blocks of data b N —r v DB
s1PB [~ ops B il = N e
\ oIPn _\\“ IPE [

Upcoming

= Function pointers

= Finish Project g

= Due Wednesday!
= Read Section 5.11 of K&R for information on function pointers

	COMP 2400
	Last time
	Questions?
	Project 5
	Quotes
	Sockets
	Includes
	socket()
	Slide Number 9
	Client
	Making an address for a client
	Sending
	Receiving
	Servers
	Bind
	Listening
	Accept
	setsockopt()
	Example 1
	Example 2
	File Systems
	Disks and partitions
	Popular file systems
	Partition layout
	i-nodes
	Upcoming
	Next time…
	Reminders

